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An efficient numerical scheme is presented to compute the response of piezoelectric composite materials
with arbitrary complex microstructures. It makes use of fast Fourier transform to solve iteratively the coupled
periodic Lippmann-Schwinger equations for a heterogeneous electroelastic medium. The method is assessed in
the case of a two-phase composite by comparison with analytic solutions and finite-element results taken from
the literature.
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I. INTRODUCTION

This work aims to describe an efficient numerical scheme
to determine the overall behavior and the local fields within
a heterogeneous medium presenting a coupled constitutive
behavior. The method is an extension of a computational
approach initially proposed for elastic-type composites.1 Up
to now, numerical homogenization in the framework of
coupled behaviors �e.g., piezoelectric, piezomagnetic, ther-
moelastic, etc.� has been essentially performed with the
finite-element method �FEM� �Refs. 2–5� which requires te-
dious meshing as soon as the microstructure becomes com-
plex. The alternative method presented in this article has
been previously used for uncoupled �linear and nonlinear�
mechanical behaviors with various microstructures1,6–8 as
well as other uncoupled physical properties.9,10 It makes use
of fast Fourier transform �FFT� and permits to use images of
the microstructure for the computation.

Section II is devoted to the mathematical formulation of
the problem to be solved. It is shown that the local fields are
solutions of a set of coupled Lippmann-Schwinger �LS�
equations. The iterative scheme which allows one to solve
the LS equations is detailed in Sec. III. Results are presented
for a two-phase composite material with laminate or fibrous
microstructure in Sec. IV.

II. INTEGRAL EQUATIONS FOR HETEROGENEOUS
ELECTROELASTICITY

We consider a representative volume element �RVE� � of
a heterogeneous electroelastic material under isothermal con-

ditions. The local properties of the material are thus defined
by the elastic C, the dielectric �permittivity� �, and the pi-
ezoelectric e moduli tensors. Relevant field variables to de-
scribe the behavior of the medium are thus the elastic strain
ε, the stress �, the electric induction D, and the electric field
E. The elastic strain and the electric field are, respectively,
derivable from the displacement field u and the electric po-
tential �. Tensor rank and units of the different variables of
the problem are summarized in Table I.

To solve the problem, the periodic boundary conditions
are chosen and the RVE is considered as a unit cell. Using
periodicity conditions stated by Suquet,11 the fields u and �
on the boundary �� of the unit cell are decomposed into

u�x� = ε . x + u��x� and ��x� = − E . x + ���x� , �1�

with ε and E as prescribed average values of the strain and
electric fields over �. u� and �� are periodic �#� fluctuating
terms. Besides, the mechanical and electric static equilibrium
between neighboring cells imply antiperiodic �-#� conditions
for the traction vector � .n and the electric charge D .n on
�� �n is the outer unit normal on the boundary�.

The problem to be solved can thus be expressed as: find
u�x� and ��x�, ∀x�� such that

�
Potential fields: ε = 1

2 �grad u + Tgrad u�, E = − grad �

Local laws: ��x� = C�x�:ε�x� − Te�x� . E�x�
D�x� = e�x�:ε�x� + ��x� . E�x�

Static equilibrium: div � = 0, div D = 0

Boundary conditions: u�, �� # and � . n, D . n-#, ∀ x � �� .
� �2�

Note that the transpose of e is defined by Teijn=enij. The notation introduced by Barnett and Lothe12 to treat electroelastic
problems is unnecessary for our study. Simple tensorial relations are kept to describe the problem.
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By introducing a homogeneous reference medium with
elastic C0, permittivity �0, and piezoelectric e0 moduli ten-
sors, the heterogeneous electroelastic problem is transformed
into a homogeneous electroelastic problem with heteroge-
neous fields of fictitious body forces �f�� and free electric
charges �q��.13,14 Static equilibrium relations thus read as

div�C0: grad u + Te0 . grad �� + f� = 0

and

div�e0: grad u − �0 . grad �� + q� = 0, �3�

with

f� = div��C: grad u + T�e . grad �� ,

q� = div��e: grad u − �� . grad �� . �4�

The notation �a means a�x�−a0. The system of differential
equations �3� can be solved using the standard Green’s-
functions method. In linear piezoelectric media, the electro-
elastic Green’s functions describe the elastic displacement u
and electric potential � at point x due to a unit point force or
electric charge at point x�. The solution to this coupled-field
problem was derived by Deeg.15 It has been used to obtain a
generalization of Eshelby’s inclusion solution in
elasticity16,17 and to extend different micromechanical mod-
els to coupled electroelasticity.17–19 By making use of the
superposition principle, Deeg’s result allows to get the solu-
tion of periodic homogeneous electroelastic problem �3� with
fluctuating fields f��x� and q��x�. It is expressible as coupled
periodic Lippmann-Schwinger equations

ε�x� = ε − �0 � ��x� − T�0 � P�x�, ∀ x � � ,

E�x� = E + �0 � ��x� + �0 � P�x�, ∀ x � � , �5�

which are linear integral equations for the fields ε and E �the
notation � indicates a convolution product�. � and P are po-
larization fields from which f� and q� are, respectively, de-
rivable. They read as

� = �C:ε − T�e . E and P = �e:ε + �� . E . �6�

It can be remarked that only three Green’s operators �0, �0,
and �0 have to be introduced because of the symmetry of the
piezoelectric effect �i.e., the value of the strain ε at point x

due to a unit negative electric induction at point x� is equal
to the value of the electric field E at point x due to a unit
stress at point x��. The coupled periodic Lippmann-
Schwinger equation �5� reads in Fourier space as

ε̂��� = − �̂0���:�̂��� − T�̂0��� . P̂���, ∀ � � 0, ε̂�0� = ε ,

Ê��� = �̂0���:�̂��� + �̂0��� . P̂���, ∀ � � 0, Ê�0� = E .

�7�

The operators �0, �0, and �0 are explicitly known in Fourier
space for whatever anisotropy of the reference piezoelectric
medium.16,19 They are given by

�̂ijkl
0 ��� =

1

4
�Kil

−1�k� j + Kjl
−1�k�i + Kik

−1�l� j + Kjk
−1�i�l� ,

�̂nij
0 ��� =

1

2
�K4j

−1�i�n + K4i
−1� j�n� ,

�̂ij
0 ��� = K44

−1�i� j , �8�

with K a 4�4 matrix whose components read as

�Kij = Cpijq
0 �p�q, ∀ �i, j� � �1,3�2

K4i = Ki4 = epiq
0 �p�q, ∀ i � �1,3�

K44 = − 	pq
0 �p�q.

� �9�

When the reference medium does not present piezoelectric

coupling �i.e., e0=0�, �̂0=0 while the operators �̂0 and �̂0

reduce, respectively, to the Green operators for elasticity and
electrostatics. It is stressed out that the presented formalism
can be applied to other coupled-field problems which have
the same structure �i.e., constitutive laws, divergence, and
gradient equations�. In particular, it can be used to tackle
magnetoelectroelastic problems.

III. FOURIER TRANSFORM BASED METHOD

A. Iterative scheme

An efficient numerical scheme based on Fourier transform
has been previously proposed to solve Lippmann-Schwinger-
type equations for elastic,1 conduction,9 or dielectric10 prop-
erties. This method uses the fact that the polarization fields
are defined locally in real space whereas the Green’s opera-
tors act locally in Fourier space where they are explicitly
known.

The iterative scheme proposed by Moulinec and
Suquet1,20 for elastic problems can be extended to the context
of composite materials with coupled physical properties. In
the case of piezoelectric materials, the direct Fourier trans-
form of an initial guess of the polarization fields � and P �Eq.
�6��, defined on a regular grid, allows to obtain the strain and
electric fields in Fourier space. By applying inverse Fourier
transform to the latter, the stress and electric induction fields
can be computed in real space using the constitutive equa-
tions and can lead to a new estimate of the polarization
fields. The solution fields ε and E are then obtained by suc-

TABLE I. Symbols and units.

Physical quantity Symbol Tensor rank Units

Stress � 2 N m−2

Elastic strain ε 2

Elastic displacement u 1 m

Electric induction D 1 C m−2

Electric field E 1 V m−1

Electric potential � 0 V

Piezoelectric moduli e 3 C m−2

Permittivity moduli � 2 F m−1

Elastic moduli C 4 N m−2
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cessive iterations until convergence criterion is reached. De-
tails on the rate of convergence of the method can be found
in the study of Michel et al.21

An attractive feature of this approach is that the pixel
discretization of the image of the microstructure can be used
to assign the local properties of the material at the nodes of a
regular grid. Compared to the FEM, there is thus no need to
mesh the microstructure. This allows to consider easily ma-
terials with complex microstructures.1,6 Besides, by using
FFT algorithms, the computational cost scales almost lin-
early with the size of the problem �i.e., number of pixels in
two dimensions and voxels in three dimensions�.

B. Algorithm

Periodic microstructures are considered. Consequently,
the microstructure of the material is obtained by repeating
periodically an elementary pattern �i.e., unit cell�. First, this
unit cell is discretized in a regular grid and the local proper-
ties C, e, and � are assigned at each point xg of the grid.
Then, the reference medium has to be defined to compute the
different Green operators ��0 ,�0 ,�0� in Fourier space at
each frequency �g. The convergence of the method is
strongly sensitive to the choice of the reference medium.
Based on previous results in the mechanical context,1,21 we
chose

C0 = �C�, e0 = �e�, and �0 = ��� .

Following Moulinec and Suquet,1 the iterative algorithm
then reads as follows:

Initialization: ε�xg�=ε , E�xg�=E , ∀ xg.

Iterate:
�1� ��xg�=C�xg� : ε�xg�− Te�xg� .E�xg�
D�xg�=e�xg� : ε�xg�+��xg� .E�xg�
if convergence reached→stop
�2� ��xg�=��xg�−C0 : ε�xg�+ Te0 .E�xg�
P�xg�=D�xg�−e0 : ε�xg�−�0 .E�xg�

�3� ��xg� , P�xg�→
F

�̂��g� , P̂��g�

�4� ε̂��g�=−�̂0��g�: �̂��g�−T�̂0��g�. P̂��g�, ∀ �g�0, ε̂�0�=ε

Ê��g�=�̂0��g� : �̂��g�+ �̂0��g�. P̂��g�, ∀�g�0, Ê�0�=E

�5� ε�xg� , E�xg�←
F−1

ε̂��g� , Ê��g�.
Convergence is reached when the stress � and electric

induction D fields are in equilibrium within a certain toler-
ance error. The convergence criterion is defined as

max	 �
�g . �̂��g�
2�1/2


�̂�0�

,
���g . D̂��g���1/2


D̂�0�

� 
 � . �10�

IV. ILLUSTRATIVE APPLICATIONS

To assess the proposed numerical scheme, we consider a
binary composite made of an isotropic polymer phase
�epoxy� and a transversely isotropic piezoelectric ceramics
�lead zirconium titanate–PZT� since numerous results exist
in the literature. The constitutive law of materials which are
transversely isotropic about the e3 direction can be written,
using Kelvin’s notation �see Appendix A�, as



�̆1

�̆2

�̆3

�̆4

�̆5

�̆6

D1

D2

D3

� = 

C̆11 C̆12 C̆13 0 0 0 0 0 − ĕ31

C̆12 C̆11 C̆13 0 0 0 0 0 − ĕ31

C̆13 C̆13 C̆33 0 0 0 0 0 − ĕ33

0 0 0 C̆44 0 0 0 − ĕ15 0

0 0 0 0 C̆44 0 − ĕ15 0 0

0 0 0 0 0 C̆66 0 0 0

0 0 0 0 ĕ15 0 	11 0 0

0 0 0 ĕ15 0 0 0 	11 0

ĕ31 ĕ31 ĕ33 0 0 0 0 0 	33

� . 


̆1


̆2


̆3


̆4


̆5


̆6

E1

E2

E3

� .

The isotropic constitutive law is obtained with the following
additional relations:

C̆33 = C̆11, C̆12 = C̆13, C̆66 = C̆44, ĕ = 0, 	33 = 	11.

�11�

Material data for PZT and epoxy are given in Table II. The
FFT-based numerical scheme is now used to compute the

response of the binary composite with two different arrange-
ments of the constituents.

A. Laminate composite

The simplest microstructural case is the laminate compos-
ite which is made of successive layers of the constituents
with arbitrary thickness. Indeed, it is well known that there is
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an exact solution to the problem and that the fields are con-
stant within each layer. The solution has been given by Ben-
veniste and Dvorak22 in the specific case where the axes of
transverse isotropy of each layer are parallel to each other
and perpendicular to the lamination direction. In the sequel,
e3 is the axis of transverse isotropy and e2 is normal to the
layers.

The applied mechanical loading is shear parallel to the
layers �
̄23 imposed� and the electric loading is normal to the

layers �Ē2 imposed�. The nonvanishing components of the
strain ε and electric field E within layer �r� read as22


23
�r� = A


�r�
̄23 + B

�r�Ē2,

E2
�r� = AE

�r�
̄23 + BE
�r�Ē2. �12�

For completeness, the expressions of the influence factors
A


�r�, B

�r�, AE

�r�, and BE
�r� are given in Appendix B.

The results of the numerical scheme are presented in Fig.
1 for the local strain and electric fields within a binary lami-
nate composite with c1=c2=0.5. The unit cell has been dis-
cretized with a regular grid of 32�32 pixels and the con-
vergence error � is equal to 10−6. Only two iterations are
necessary to reach convergence in this case. The FFT com-
putational scheme leads to uniform fields within each layer,
and analytical solution �12� is obtained numerically. It is
worth noting that convergence is obtained even if the com-
posite presents an infinite piezoelectric contrast because of
the finite contrast on the elastic and dielectric properties.

B. Fiber composite

We further consider a composite material made of PZT
parallel circular fibers embedded in an isotropic epoxy ma-
trix. In the cross section of the material, the fibers are ar-

ranged on a periodic square array. A representative unit cell
is thus a square with a fiber at the center and the overall
behavior exhibits quadratic symmetry.

To compute the effective moduli of the composite, the
unit cell has been discretized with a regular grid of 512
�512 pixels and we applied successively six different load-

ings �
̄11, 
̄33, 
̄23, 
̄12, Ē1, and Ē3�. The results obtained with
the FFT-based numerical scheme are compared with previ-
ously published FEM studies2,3 in Table III. For this com-
parison, note that we converted the overall moduli obtained
by FEM which were given at constant electric induction D
whereas we used, in the present work, constitutive equations
at constant electric field E. An excellent agreement is ob-
tained with the FEM results for all effective moduli and the
computational method requires, in average, only a few itera-
tions to converge with an error of 10−6 on the field equilib-
rium. Besides, it has been checked that our results fulfill,
with a relative error of a few percent, the universal relations
for the overall moduli of fiber composite materials with qua-
dratic �tetragonal� symmetry.22 For illustrative purpose, the
distribution of the local fields E1 and 
13 for a macroscopic

loading Ē1 is plotted in Fig. 2. Almost uniform fields are
predicted within the fibers where, as expected, a low electri-
cal field takes place. Significant longitudinal shear strain is
predicted in the matrix at the fiber-matrix interface normal to
the e1 axis.

TABLE II. Material properties of the constituents �after Pettermann and Suresh �Ref. 2��. Elastic moduli are in GPa, dielectric moduli are
in nC/Vm, and piezoelectric moduli are in C /m2.

C̆11 C̆12 C̆13 C̆33 C̆44 /2 C̆66 /2 ĕ31 ĕ33 ĕ15 /�2 	11 	33

Epoxy 8.0 4.4 4.4 8.0 1.8 1.8 0 0 0 3.72�10−2 3.72�10−2

PZT 154.837 83.237 82.712 131.39 25.696 35.8 −2.120582 9.52183 9.34959 4.065 2.079

(b)(a)

FIG. 1. �Color online� Component E2 of the electric field and
component 
23 of the strain field within the two-phase laminate

composite. Unitary Ē2 and 
̄23 imposed.

TABLE III. Comparison of FFT and FEM results �Refs. 2 and 3�
for the effective moduli of the fibrous composite with 60% volume
fraction of fibers. Units are the same as Table II.

FFT FEMa FEMb

C̆11 25.11 25.16 25.14

C̆12 8.57 8.73 8.68

C̆13 11.78 11.85 11.83

C̆33 54.46 54.61 54.52

C̆44 /2 6.63 6.68 6.64

C̆66 /2 4.62 4.64 4.64

ĕ31 −0.20 −0.20 −0.20

ĕ33 6.43 6.45 6.45

ĕ15 /�2 0.052 0.052 0.052

	11 0.157 0.158 0.157

	33 1.277 1.282 1.280

aReference 2.
bReference 3.
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V. CONCLUDING REMARKS

By following the approach initially developed for un-
coupled mechanical constitutive behavior by Moulinec and
Suquet,1 we have presented a computational scheme to pre-
dict the local and overall responses of heterogeneous electro-
elastic materials. This scheme, which makes use of fast Fou-
rier transform algorithms and allows to use the image of the
material as direct input, is a viable alternative to finite-
element analysis to tackle the response of piezoelectric com-
posites. In this article, the method has been successfully
compared to analytical solutions and finite-element results
for simple binary composites. However, the method is par-

ticularly well suited to consider heterogeneous materials with
complex microstructures like polycrystalline ceramics. Such
microstructural computations have been previously per-
formed in the uncoupled mechanical context.6,8 Eventually, it
is noted that this computational procedure can be used for
nonlinear heterogeneous materials with coupled constitutive
equations and is not restricted to the coupled piezoelectric
behavior. It is relevant for other “multiphysics” problems
which adopt a similar mathematical description �e.g., mag-
netoelectroelasticity�.

APPENDIX A: KELVIN NOTATION FOR
SYMMETRIC TENSORS

The Kelvin notation,23 initially introduced in elasticity,
can be advantageously used to write the electroelastic con-
stitutive equations as

��̆� = C̆��
̆� − Tĕ�jEj ,

Di = ĕi�
̆� + 	ijEj ,
� �A1�

where �� ,��� �1,6�2 and �i , j�� �1,3�2. In the orthonormal

basis �ei , i� �1,3��, the components of �̆, ε̆, C̆, and ĕ are

��̆� = ��11�22�33
�2�23

�2�13
�2�12� ,

�ε̆� = �
11
22
33
�2
23

�2
13
�2
12� ,

�C̆� = 

C1111 C1122 C1133 �2C1132

�2C1131
�2C1121

C2211 C2222 C2233 �2C2232
�2C2231

�2C2221

C3311 C3322 C3333 �2C3332
�2C3331

�2C3321

�2C2311
�2C2322

�2C2333 2C2332 2C2331 2C2321

�2C1311
�2C1322

�2C1333 2C1332 2C1331 2C1321

�2C1211
�2C1222

�2C1233 2C1232 2C1231 2C1221

� ,

�ĕ� = 
e111 e122 e133 �2e123
�2e113

�2e112

e211 e222 e233 �2e223
�2e213

�2e212

e311 e322 e333 �2e323
�2e313

�2e312
� .

The coupled constitutive equations can thus be expressed in the following concise form

J� = L��F�, ��,�� � �1,9�2, �A2�

with

�J� = ��11�22�33
�2�23

�2�13
�2�12D1D2D3� ,

�F� = �
11
22
33
�2
23

�2
13
�2
12E1E2E3� ,

(a) (b)

FIG. 2. �Color online� Component E1 of the electric field and
component 
13 of the strain field within the fiber composite with

square arrangement for a unitary uniaxial applied electric field Ē1.
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�L� = 

C1111 C1122 C1133 �2C1132

�2C1131
�2C1121 − e111 − e211 − e311

C2211 C2222 C2233 �2C2232
�2C2231

�2C2221 − e122 − e222 − e322

C3311 C3322 C3333 �2C3332
�2C3331

�2C3321 − e133 − e233 − e333

�2C2311
�2C2322

�2C2333 2C2332 2C2331 2C2321 − �2e123 − �2e223 − �2e323

�2C1311
�2C1322

�2C1333 2C1332 2C1331 2C1321 − �2e113 − �2e213 − �2e313

�2C1211
�2C1222

�2C1233 2C1232 2C1231 2C1221 − �2e112 − �2e212 − �2e312

e111 e122 e133 �2e123
�2e113

�2e112 	11 	12 	13

e211 e222 e233 �2e223
�2e213

�2e212 	12 	22 	23

e311 e322 e333 �2e323
�2e313

�2e312 	13 	23 	33

� .

APPENDIX B: EXPRESSION OF THE INFLUENCE
FACTORS FOR THE BINARY LAMINATE COMPOSITE

Analytic expressions of the influence factors of relation
�12� can be found in Ref. 22. They read, for phase 1, as

A

�1� = ��c1	11

�2� + c2	11
�1��C̆44

�2� + �c1ĕ15
�2� + c2ĕ15

�1��ĕ15
�2��/2D ,

B

�1� = c2�	11

�2�ĕ15
�1� − 	11

�1�ĕ15
�2��/2D�2,

AE
�1� = c2�C̆44

�1�ĕ15
�2� − C̆44

�2�ĕ15
�1��/D�2,

BE
�1� = �ĕ15

�2��c1ĕ15
�2� + c2ĕ15

�1�� + 	11
�2��c1C̆44

�2� + c2C̆44
�1���/2D ,

D =
1

2
��c1ĕ15

�2� + c2ĕ15
�1��2 + �c1C̆44

�2� + c2C̆44
�1���c1	11

�2� + c2	11
�1��� .

�B1�

c1 and c2 are the volumic fractions of each phase. Corre-
sponding influence factors for phase 2 are simply obtained
by interchanging indices �1�↔ �2�.
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